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Understanding the evolutionary stability of cooperation is a central problem in biology, sociology,
and economics. There exist only a few known mechanisms that guarantee the existence of coop-
eration and its robustness to cheating. Here, we introduce a new mechanism for the emergence of
cooperation in the presence of fluctuations. We consider agents whose wealth change stochastically
in a multiplicative fashion. Each agent can share part of her wealth as public good, which is equally
distributed among all the agents. We show than, when agents operate with long time-horizons,
cooperation produce an advantage at the individual level, as it effectively screens agents from the
deleterious effect of environmental fluctuations.

Introduction.— The emergence and the stability of cooperation is a central problem in biology, sociology, and
economics [1–5]. Cooperation produces an advantage for the group, through the creation and sharing of social goods,
but is inherently unstable to cheating and to the tragedy of the commons, where individual agents benefit from the
social good without contributing to its creation [6, 7]. The dilemma of the evolution of cooperation can be solved in
presence of one or more specific mechanisms [8], which lead to the emergence and long-term stability of the cooperative
trait.

Many systems of interest for the study of cooperation exist in a context subject to fluctuation and stochasticity. A
paradigmatic model for these systems, which has applications in both economics and population biology, is geometric
Brownian motion, which describes the stochastic dynamics of a variable x(t) as ẋ = µx + σxξ(t), where ξ(t) is a
delta-correlated white noise. In biology, x could represent the abundance of a population, in economics x is the value
of an asset or the wealth accumulated by a gambler. In the following we will refer to x as wealth or value of an
agent, keeping however in mind the breadth of the applications of the geometric Brownian motion. In general, this
equation describes the diffusion limit of growth under a stochastic multiplicative process (see Supplemental Material
(SM) [9] section S1). An essential feature of multiplicative growth is that it lacks ergodicity [10], as the time-average
behavior differs from the ensemble average. The latter grows exponentially in time with rate µ, while the former grows
with rate g = limt→∞〈log x(t)〉/t = µ−σ2/2. This difference parallels the difference between arithmetic mean (which
corresponds to the ensemble average) and geometric mean (which converges to the time average), and it is the deep
reason why the latter is a natural quantity to optimize for agents aiming at maximizing their future profits or growth.
In the context of gambling, the Kelly criterion defines the optimal size of a bet based on optimization of the geometric
mean [11]. In evolutionary biology, under varying environmental conditions, natural selection favors traits on the
basis of their geometric mean fitness [12, 13]. An important consequence of the fact that the geometric mean fitness
determines the optimal solution is that not only the average environment but also the amplitude of its fluctuations
determine its value, as the geometric average grows with rate µ−σ2/2. Reducing fluctuations, i.e., reducing the value
of σ, has, therefore, a positive effect and should be expected to be advantaged by natural selection [14].

In the context of growth under fluctuating conditions, we introduce the possibility of cooperation between G agents,
by generalizing the setting of Refs. [15–17]. We formulate the model in the context of time-discrete multiplicative
random processes. At each time-step, the wealth of each agent changes stochastically as it is multiplied by a random
variable. Each agent can also share a fraction ai ∈ [0, 1] of her wealth xi(t) Agents can share a fraction of their value
as a public good, which is then divided equally among the agents. If none of the agents share anything (ai = 0 for
all i) the agents’ value growth are uncoupled, and in the diffusion limit, the model reduces to a system of uncoupled
geometric Brownian motion equations. The presence of sharing (ai > 0) couples the dynamics of agents’ value. In
this context it is useful to define that an agent, in a time step ∆t, shares a fraction ai = αi∆t of her wealth. The
parameter αi represents therefore a sharing rate, i.e., the fraction of value shared per unit time. For ∆t → 0, we
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obtain the diffusion limit (see SM [9] section S2)

ẋi(t) = µxi(t) + σxi(t)ξi(t) +
1

G

∑
j 6=i

(αjxj(t)− αixi(t)) , (1)

where ξi(t) are delta-correlated white noises. We will first consider the case where agents experience independent
fluctuations, i.e., the noises ξi and ξj are uncorrelated.

The full defector scenario α = 0 corresponds to the original Geometric Brownian motion solution gi = µ − σ2/2.
If all the agents fully cooperate (αi →∞ for all i), one can obtain an exact solution of the trajectories xi(t) [15–17]
resulting in an higher growth rate gi = µ − σ2/(2G). The intuition behind these results is that, in this context,
cooperation produces an advantage as it reduces effectively variability. By sharing their values with others, agents
effectively diversify their investments, making their values less subject to fluctuations and, therefore, leading to faster
growth. Sharing with more agents further reduces the effect of stochasticity, producing a positive relationship between
long-term growth and group size G. This result shed the light on the importance of cooperation under fluctuating
conditions: cooperation screens individuals from the negative effect of variability. However, it does not explain how
cooperation can emerge and why it could be stable to defection. Also in the simple context of the prisoner dilemma,
cooperation produces an individual advantage over defection, when all agents cooperate (i.e., cooperation is Pareto
optimal). The dilemma is, as well known, that cooperation is not stable (given that all the other agents are cooperating
is advantageous for the individual to defect) while defection is (if all the agents are defecting there is no advantage in
starting cooperating).

In this Letter, we explore the stability and origin of cooperation under fluctuating conditions, using the setting
of Eq. (1). We show that the maximization of the individual long-time return leads to the emergence and stability
of cooperation. We further explore the robustness of these results to correlated fluctuations, colored noise, costly
cooperation, and finiteness of time-horizons. We show that, for large enough time-horizons, arbitrary levels of cor-
related fluctuations, noise time-correlation and costly sharing, cooperation (either full or partial) is advantageous at
the individual level. Finally, we explore the effect of these results on an explicit evolutionary dynamics.

Emergence and stability of cooperation.— In order to make analytical progress on Eq. (1) it is convenient to
introduce qi(t) := ln(xi(t)). The quantity that agents optimise is simply gi = limt→∞〈qi(t)〉/t. The dynamics of qi
can be obtained from Eq. (1) using Itô calculus. In the case of two agents (G = 2) one obtains

〈q̇1〉 = µ− σ2

2
− α1

2
+
α2

2
〈exp (q2 − q1)〉(t) . (2)

In the case αi = 0 one recovers gi = µ − σ2/2. In every other case, the growth rate of the geometric mean of agent
i, in presence of another agent with resource sharing ratio αj , will therefore depend on both αi and αj and will be
denoted it by gαi|αj . In the simple case of two agents, we can treat gαi|αj as the payoff function of a continuous game.
We aim then at finding the (pure-strategy) Nash equilibria and the evolutionary stable strategies.

It is possible to show (see SM [9] section S3) that the dynamics of exp (q2 − q1) — the only non trivial term in
Eq. (2) — is ergodic with a stationary distribution, leading to a well defined term 〈exp (q2 − q1)〉eq. The growth rate
gαi|αj will be equal to g0|0 + (αj〈exp (q2 − q1)〉eq − αj) /2.

We also obtain the analytic expression of the stationary distribution of (q2 − q1), from which we are able to calculate
explicitly 〈exp (q2 − q1)〉eq and therefore the long-term growth rate. In particular the effect of cooperation can be
quantified by the difference

gα1|α2
− g0|0 = −α1

2
+

√
α1α2

2

K−1+α2−α1
2σ2

(√
α1α2

σ2

)
Kα2−α1

2σ2

(√
α1α2

σ2

) , (3)

where Kβ(z) is the modified Bessel function of the second type. Fig. 1 shows that our analytical solution of Eq. (3)
correctly matches the numerical simulations. For fixed strategies α1 and α2, the effect of cooperation increases
monotonically with σ: the higher are the fluctuations, the higher is the advantage of cooperation. Interestingly
however, for a fixed value of α2, the long-term growth rate is not monotonic in α1.

The relevant question then reads: given a strategy of the second player α2, what is the optimal value of α1?
Mathematically, what is the value of α∗(α2) := argmaxαgα|α2

that maximizes the long-term growth rate as a function
of the other agents’ strategy? This formulation of the problem readily gives us information on the stability of the
strategies, since agents maximizing their own growth rates will converge to some equilibrium value(s) of the sharing
rate αess which are identified as the solutions α∗(αess) = αess.

The first non-trivial original result of our Letter is that the value of resource sharing that maximize the growth rate
α∗1(α2) for a given strategy of the other agent α2 is always larger than the latter: α∗1(α2) > α2 (see Fig. 1).
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FIG. 1. The optimal strategy for long term growth is to cooperate more than the partner as the growth rate of individual 1 is
maximized by a value of α1 bigger than the partner’s α2. Panel A displays the the difference between the infinite time growth
rate gα1|α2

and the growth rate of the fully defecting case g0|0 as a function of α1 for a fixed value α2 = 0.5 and different values
of the noise amplitude σ (colors). The analytical result of Eq. (3) (solid lines) matches the numerical simulations (markers).
Red markers indicate the maxima of the curves, i.e. the value of α1 maximizing agent 1’s growth rate. This value lies on the
right hand side of the vertical gray line that represents the values of α2 = 0.5, indicating that the optimal choice for agent 1
is to share more than agent 2. Panel B shows, for σ = 1, the analytical solution of long term growth rate (dark gray) and its
maximum (red dots) for different values of α2. The maxima are always found for α1 > α2. This can be seen by the projection
of the maxima on the horizontal plane (red solid line) that always stays above the diagonal (dashed red line, α1 = α2). Panel c
shows the dependence of the optimal α line with σ. Decreasing the noise amplitude the curve gets closer to the diagonal while
staying above it, showing that the optimal α is higher than the partner’s α for any noise amplitude.

This mathematical result implies that, contrarily to the mechanism in the tragedy of the commons, each agent
has an individual advantage in sharing more than the other agent. As a consequence, the evolutionary, adaptive, or
learning dynamics maximizing the growth g should lead to a larger and larger level of cooperation (i.e., larger and
larger values of α).

The intuition behind this result is that, in presence of fluctuations, sharing is akin to investment diversification. As
already mentioned, sharing screens the agent from the detrimental effects of fluctuations. In the long-time horizon,
the return from this investment (the term α2〈exp (q2 − q1)〉eq/2) repays its cost (equal to α1/2).

Robustness of the results.— One key assumption we considered so far is that the two agents experience independent
fluctuations. This assumption can be easily relaxed by assuming that noises are not independent: ξi(t)ξj(t

′) = ρδ(t−t′)
if i 6= j. The parameter ρ quantifies the correlation between the fluctuations that two agents experience. One
can expect that positive correlations (ρ > 0) might affect our results: if agents share correlated fluctuations, the
diversification effect behind the advantage of cooperation might disappear. This case is still amenable of analytical
treatment and one obtains that the form of solution of Eq. (3) still applies, and the correct result is obtained by
applying the substitution σ2 → σ2(1 − ρ) on the right hand side of the equation. Correlated fluctuation decrease
the long-term growth rate because they effectively decrease the amplitude of fluctuations on which cooperation can
produce a positive effect. Correlated fluctuations do not, however, change the equilibrium strategy: it is still more
advantageous to cooperate more than the partner, despite the reduced relative benefit. In a similar way, increasing
the group size does not alter our results. In principle, increasing the group size could have two opposite effects. On
the one hand, for an individual, the relative advantage of sharing could be diminished in a larger group, as the returns
of her investments are also shared with others. On the other hand, larger group sizes reduce even more the effect of
fluctuations, as they correspond to an higher level of diversification. As a result, the combination of these two effects,
turns out to produce even an higher advantage for cooperation. In particular, larger groups produce larger values of
the growth rate, that, in the case of full cooperation converges to µ− σ2/(2G).

Another key assumption is to describe fluctuations as white noise. In reality we might expect, e.g. in biology [18]
or in economics [19], that fluctuations are time-correlated, over some timescale τ , which could be comparable to the
other timescales of the process. We introduce this effect by assuming that fluctuations have an exponentially decaying
auto-correlation ξi(t)ξi(t

′) = exp(−|t − t′|/τ)/(2τ), which reduces to the white noise case in the limit τ → 0. While
this case cannot be exactly solved, we approximated it using unified colored noise approximation [20]. Our analytical
approximation correctly matches numerical simulation for a wide range of values of τ . In particular, we obtain that
full cooperation (αess → ∞) is not anymore an equilibrium strategy. The optimal sharing rate turns out instead to
depend on the value of τ . For any value of τ , the equilibrium sharing rate αess is a positive finite value. For small
value of τ , the equilibrium sharing rate scales as

αess ∼
σ
√

1− ρ
2
√
τ

, (4)
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which tends to full cooperation in the white-noise limit τ → 0. Also, for a given value of τ , larger levels of fluctuations
and lower noise correlation produce increased cooperation.

In many settings cooperation is associated with a cost. For instance, microbes excreting enzymes in the environment,
in addition to contributing to a public good, pay an additional cost for their synthesis [7, 21–23]. In our framework,
a cost of cooperation can be introduced in multiple ways, which mainly differ in how the cost is defined and split
among agents. In general such a term is expected to disfavour more cooperation, as it determines an additional cost
at the individual level. We consider the option where the cost is proportional to the resource share rate αi by adding
a term equal to −αiδxi(t) to the right end side of Eq. (1). The parameter δ represent the cost of cooperation per
unit of resource shared. This model can be again solved analytically, and we obtain that for any positive value of the
cooperation cost δ it exists a finite equilibrium sharing rate. Which, in the limit of small costs, scales as

αess ∼
σ2(1− ρ)

4
√
δ

. (5)

As expected, the level of cooperation increases with the non-shared component level of fluctuations σ2(1− ρ) and we
recover the case of full cooperation in the limit δ → 0.

Another key assumption of our framework is that we focused on infinite-time horizons. This can be relaxed by
considering growth over a finite time horizons T , and evaluate the average log-returns 〈qi(T )〉/T . This case is not
amenable of analytical treatment and it requires relying on numerical simulations to evaluate the average log-return .
It is convenient in this case to consider discrete time simulations, where agents can share a fraction a ∈ [0, 1] of their
value at each time step. In this setting, the time-horizon correspond to a number of discrete time-steps. Fig. 2 shows
that two regimes appear separated by a critical time horizon T ∗ . For T > T ∗, the system behaves qualitatively as
in the infinite time-horizon case: the individual optimizations of the log-average return lead agents to converge to a
value aess > 0. In particular, for very large time horizons we recover the prediction obtained under the diffusion limit
and aess → 1. For short time horizons (T < T ∗), defection is more advantageous than cooperation and log-return
optimizations lead agents to converge to aess = 0. This result sheds light on the mechanism producing cooperation
in our modeling setting: for long time-horizons, cooperation, thus investing in the other agents, continues providing
returns, overcompensating its costs.
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FIG. 2. The equilibrium value of the sharing resource percentage a display a phase transition as a function of the time horizon
T (measured in number of discrete time steps). For short time horizons (T < T ∗) it is more convenient to share less than
the partner, which drive the system to a value aess = 0. Above the threshold T ∗ a finite value of aess > 0 is evolutionary
stable. For large enough values of of the time horizons, one recovers the analytic predicted value of full cooperation (aess = 1,
equivalent to αess → ∞) obtained in the limit T → ∞.

Evolutionary dynamics in a finite population.—The results presented above provide a clear mathematical mechanism
for the emergence and stability of cooperation in the presence of fluctuations. In order to apply these results to a more
concrete example, we now focus on explicit evolutionary dynamics in a finite population. We consider a population ofN
agents reproducing with non-overlapping generations at discrete time-steps. The (random) variable xi is interpreted
as fitness. Each agent i is characterized by a sharing probability ai, which is the trait undergoing mutations and
selection. Before reproduction, individuals are paired in groups of two and their fitnesses xi are determine by the
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FIG. 3. Outcomes of the evolutionary dynamics under different time-horizons. Two similar populations, with an initial a
distribution with average 0.6, evolve with different time horizons Tshort = 20 (green dots) and Tlong = 2000 (blue dots). The
population with short time horizon evolves towards a distribution peaked in a = 0 while the long time horizon one, in the
opposite direction, towards a a = 1.

discrete multiplicative process with sharing, run over a finite time-horizon T with initial condition xi(0) = 1. The
fitness of each individual is therefore a stochastic variable that depends on the values of ai of both individuals in the
pair. After this step, the pairs are broken up and each individual reproduces proportionally to her fitness value xi.

As expected from previous results of population genetics in fluctuating environments [12], evolution drives the
population to traits that maximize the expected log-fitness. Fig. 3 shows the population average values of resource
sharing probability a over time. For a short time horizon T , defection dominates and the distribution of a is peaked
close to 0, with some variance given by mutations and genetic drift. Conversely, when the time horizon is large enough,
the vast majority of individuals cooperate, and a peaks close to one.

Discussion.— In this Letter, we have discussed the optimal sharing strategy of agents in presence of multiplicative
stochastic growth. Cooperation can lead to faster growth of individual agents, therefore becoming an evolutionary
stable strategy. In this context, cooperation effectively screens agents from the detrimental effect of fluctuations: by
cooperating, an agents effectively diversify its investment, producing an higher return in the long term. This is a
sustainable strategy only if agents act with a long-time horizon and this altruistic investment have the time to repay
off. For short time-horizons, defection becomes again the evolutionary stable strategy.

Our approach differs considerably from previously identified mechanisms that explain the emergence and the sta-
bility of cooperation [8]. Our approach does not in fact invoke multilevel selection (like in group selection or kin
selection), as we consider individuals that only maximize their own growth rate. Moreover, direct reciprocity [24]
is not the ingredient determining cooperation in our framework. Direct reciprocity requires agents to change their
actions based on the previous actions of other agents. In our setting, given a value of the resource sharing rate α2

of agent 2, even if agent 1 is allowed to choose her own sharing rate α1 once for all, her optimal choice would be to
share more than the other (α1 > α2).

More generally, mapping our results in classic evolutionary game theory requires care. One could be tempted to
consider the process described in Eq. (1) analogous to a repeated public good game, where the single game iteration
correspond to a discrete step of the growth and sharing process and the value of ẋ would be the payoff. This mapping
is indeed not straightforward as in classic game theory payoffs do not accumulate in a multiplicative fashion, and,
more importantly, do not depend on the previous history of iterations. Note however, that considering q̇ as the single
iteration payoff would not solve the problem, as also q̇ depends on the previous history of the game (i.e. on time
through x(t)). A more precise way to connect our results to game theory would be to interpret the fully history
defined by Eq. (1) as a single iteration of a game. In this context, gα1|α2

is — by definition — the payoff of the game,
and αess its unique Nash equilibrium and evolutionary stable strategy.

Our framework can therefore be seen as a mechanistic way to define a payoff matrix, in the context of agents trying
to maximise their future wealth. The fundamental origin of the advantage of cooperation in our framework is due to
the non-ergodicity of stochastic exponential growth, which effectively determines an individual advantage in reducing
the level of fluctuations. Increasing the rate of cooperation comes at an immediate individual cost, as part of the
wealth is diluted among agents as a public good, and has a long-term return, as the wealth shared with others is
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subject to independent fluctuations. The surprising result of this Letter is that the second effect is stronger then the
first one, making it more advantageus — at the individual level — to cooperate.

The application to a concrete setting in population and evolutionary biology is not straightforward. In particular,
there are two possible ways to interpret the meaning of the variable x. One possibility would be to interpret it
as a (sub-)population abundance growing exponentially in presence of environmental fluctuations. The caveat in
this interpretation is that it requires to assume that the effect of the public good on the population growth rate is
independent of the abundance. Another possibility would be to interpret x as an internal variable related to fitness
(as we did in our evolutionary model), which would require to identify such a individual variable characterized by the
dynamics of Eq. (1).

It would be interesting to extend our framework in multiple direction. First of all, we assume that individuals share
their value, but the scenario where they share only the income is potentially very interesting. We also assume that
the group size is fixed, but for many biological (e.g., origin of multicellularity [25, 26]) and sociological (e.g., group
formation [27]) it would be interesting to treat it as a dynamical variable that can be optimised.
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Supplemental Material

S1. DIFFUSION APPROXIMATION FOR RANDOM EXPONENTIAL GROWTH

Let us consider the stochastic exponential growth in discrete time

x(t+ 1) = x(t)ζ(t) (S6)

where ζ(t) is a positive random variable from an arbitrary distribution ρ(ζ). In particular, we define its mean
〈ζ〉 = 1 +m and variance 〈ζ2〉 − 〈ζ〉2 = s2. We can rewrite the previous equation as

x(t+ 1) = x(t) +mx(t) + sx(t)ν(t) , (S7)

where ν(t) is a random variable with mean 0, variance 1 and arbitrary distribution (trivially related to the one of ζ.
Without loss of generality, we can change the time units and define ∆t as the time between two steps of the process

x(t+ ∆t) = x(t) +mx(t) + sx(t)ν(t) (S8)

It is convenient to define µ = m/∆t and σ2 = s2/∆t, from which we obtain

x(t+ ∆t) = x(t) + µ∆tx(t) + σ
√

∆tx(t)ν(t) . (S9)

We are interested in timescales much longer than the discrete time-steps. It is therefore convenient to consider the
limit ∆t→ 0. As well known [28], the trajectories of Eq.( S9) converge, in the limit ∆t→ 0 to

ẋ = µx+ σxξ(t) , (S10)

where ξ(t) is a white Gaussian noise.

S2. DIFFUSION APPROXIMATION FOR RANDOM EXPONENTIAL GROWTH WITH SHARING

In the following we consider the diffusion approximation for different models involving sharing between agents. For
simplicity we restrict the analysis to the case of two agents.

S2.1. Growth, then sharing total wealth

We consider a model divided in two steps. In the first intermediate step, the wealth of each agent grows by a
random factor. In the second step, the resulting wealth are pooled and shared among agents. We describe the first
intermediate step is

x1(t+ 1/2) = x1(t)ζ1(t)

x2(t+ 1/2) = x2(t)ζ2(t)
(S11)

The second intermediate step involves the sharing of the wealth. A fraction ai of the wealth of each agent is shared
in a pool and then equally divided among agents

x1(t+ 1) = x1(t+ 1/2)(1− a1) +
a1x1(t+ 1/2) + a2x2(t+ 1/2)

2

x2(t+ 1) = x2(t+ 1/2)(1− a2) +
a1x1(t+ 1/2) + a2x2(t+ 1/2)

2
,

(S12)

Putting the two steps together, one obtains

x1(t+ 1) = x1(t)ζ1(t) +
a2x2(t)ζ2(t)− a1x1(t)ζ1(t)

2

x2(t+ 1) = x2(t)ζ2(t) +
a1x1(t)ζ1(t)− a2x2(t)ζ2(t)

2
.

(S13)
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Following the same procedure used in section S1, we introduce the discrete time step duration ∆t, and the parameters
µ = m/∆t and s2 = σ2/∆t. We also introduce the sharing rate α = a/∆t. We obtain

x1(t+ ∆t) = x1(t)(1 + µ∆t+ σ
√

∆tν1(t))+

∆t
α2x2(t)(1 + µ∆t+ σ

√
∆tν2(t))− α1x1(t)(1 + µ∆t+ σ

√
∆tν1(t))

2
,

(S14)

and an analogous equation for x2. In the limit ∆t→ 0, this equation converges to

ẋ1 = µx1 + σx1ξ1(t) +
α2x2 − α1x1

2
, (S15)

where ξ1(t) is a Gaussian white noise, with 〈ξ1(t)ξ2(t′)〉 = ρδ(t − t′), where ρ is the correlation coefficient between
ζ1(t) and ζ2(t)

ρ =
〈ζ1(t)ζ2(t)〉 −m2

s2
, (S16)

S2.2. Share total wealth, then grow

This model differs from the previous just because the order of the steps is reverted. The first step is

x1(t+ 1/2) = x1(t) +
a2x2(t)− a1x1(t)

2
, (S17)

while the second intermediate step is

x1(t+ 1) = x1(t+ 1/2)ζ1(t) , (S18)

and equivalent for the other agent. Taken together, we obtain

x1(t+ 1) = x1(t)ζ1(t) +
a2x2(t)− a1x1(t)

2
ζ1(t) . (S19)

It is easy to see that the same considerations that apply to the previous model apply also to this one, and one
obtains exactly the same diffusion limit, with the same interpretation of parameters.

S3. SOLUTION OF THE DIFFUSION LIMIT

We consider the diffusion limit with two agents

ẋ1 = µx1 + x1σξ1(t) +
α2x2 − α1x1

2

ẋ2 = µx2 + x2σξ2(t) +
α1x1 − α2x2

2

(S20)

where, in full generality, the noise can be correlated both among individuals and in time

〈ξi(t)ξj(t′)〉 = (ρ(1− δij) + δij)
e−
|t−t′|
τ

2τ
. (S21)

The limit τ → 0 corresponds to the δ-correlate case, where 〈ξi(t)ξi(t′)〉 = δ(t− t′)
By introducing qi := log(xi), we obtain

q̇1 = µ− σ2

2
+ σε1 +

α2e
q2−q1 − α1

2

q̇2 = µ− σ2

2
+ σε2 +

α1e
q1−q2 − α2

2
,

(S22)
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where the term −σ2/2 appears because of Itô integration rules. It is useful to write an equation for the difference of
log-returns d := q2 − q1, which reads

ḋ =
α1e
−d − α2e

d

2
+
α1 − α2

2
+ σ

√
2(1− ρ)ε(t) (S23)

where the noise term ε(t), with covariance,

〈ε(t)ε(t′)〉 =
e
|t−t′|
τ

2τ
(S24)

was obtained using ξ1(t)− ξ2(t) =
√

2(1− ρ)ε(t).
The average log-return

gα1|α2
:= lim

t→∞

〈q1〉
t

(S25)

can be calculated from Eq. (S22) by solving

〈q̇1〉 = µ− σ2

2
+
α2〈ed〉 − α1

2
, (S26)

which requires to calculate 〈ed〉 using Eq. (S41). Since Eq. (S41) admits a stationary distribution P ∗(d), for large
times 〈ed〉 will converge to the time independent quantity

〈ed〉∗ :=

∫ ∞
−∞

dd P ∗(d)ed , (S27)

and therefore we obtain the solution

gα1|α2
= µ− σ2

2
+
α2〈ed〉∗ − α1

2
(S28)

Given a value of α2, we can ask what is the value of α1 that maximizes the growth rate of agent 1

α∗(α2) := arg max
β

gβ|α2
. (S29)

We can imagine an iterative process where each agent, in turn, sets her own sharing rate to the optimal value. If
α∗1(α2) > α2, the first agent will set her sharing rate α1 to a value larger than the one of agent 2. Then agent 2, will
set her own sharing rate to the value that maximize her growth rate given a sharing rate of the other agent equal to
the new value α1. If we define the function α∗(α) = arg maxβ gβ|α, we expect that, in this iterative process, α will
increase when α∗(α) > α and decrease when α∗(α) < α. We define the equilibrium value(s) of the sharing rate the
solution of α∗(αess) = αess. If α∗(α) > α, we will say that αess =∞ (which correspond to full cooperation), while if
α∗(α) < α, then αess = 0 (full defection). Figure S4 shows the values of α∗(α) under different modeling scenarios.

It is important to notice that gα1|α2
= gα2|α1

. This can be shown by noticing that

gα2|α1
= lim
t→∞

〈q2〉
t

= lim
t→∞

〈q1〉+ 〈d〉
t

= gα1|α2
+ lim
t→∞

〈d〉
t
. (S30)

Since d admits a stationary distribution, for large times 〈d〉 converges to a finite value 〈d〉∗ and therefore the limit on
the right end equals zero.

Notice that since gα2|α1
is symmetric, whenever we find an solution of α∗(αess) = αess, the pure strategies α1 = αess

and α2 = αess are (at least weak) Nash equilibrium. By construction αess = arg maxα1
gα1|αess implies that α1 = αess

is a best response to α2 = αess. By symmetry it holds that also αess = arg maxα2
gα2|αess , so the converse is also true.

S3.1. Delta-correlated noise: τ = 0

If no time correlation is present in the multiplicative noises (τ = 0) the stationary distribution of d can be calculated

exactly. Defining f(x) := α1e
−x−α2e

x

2 + α1−α2

2 we have
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FIG. S4. Value of the sharing rate α∗(α) that maximizes an agent long term growth rate as a function of the sharing rate of
the partner α. Panel A shows the curves obtained for different values of the noise autocorrelation time τ (colors) for ρ = 0
and cooperation cost δ = 0. Panel B shows the optimal value of the sharing rate as function of the partner sharing rate for
different values of ρ (colors) for τ = 0 and δ = 0. Panel C shows the optimal value of the sharing rate as function of the partner
sharing rate for different values of the cooperation cost δ (colors) for τ = 0 and ρ = 0. The dashed line represent the value of
the sharing rate equal to the one of the partner. When the optimal sharing rate exceeds the value of the sharing rate of the
partner (α∗(α) > α), sharing is expected to increase (arrows pointing to the right), when it is below (α∗(α) < α), the sharing
rate is expected to decrease (arrows pointing to the left). In Panel A and C, the curves of the optimal value of the sharing rate
intercept the dashed line at finite value of the partner α = α∗(α), which correspond to the equilibrium value αess. In panel B,
the curves are always above the dashed line, implying the αess → ∞.

P ∗(d) ∝ exp

(
1

σ2(1− ρ)

∫ d

0

dxf(x)

)
, (S31)

from which we obtain

P ∗(d) =
1

Z
exp

(
(1− e−d)(α1 − edα2) + (α1 − α2)d

2σ2(1− ρ)

)
, (S32)

where

Z :=

∫ ∞
−∞

dd exp

(
(1− e−d)(α1 − edα2) + (α1 − α2)d

2σ2(1− ρ)

)
=

= 2e
− α1+α2

2(ρ−1)σ2

(
α2

α1

)
α1−α2

4(ρ−1)σ2K α2−α1
2(1−ρ)σ2

( √
α1α2

(1− ρ)σ2

)
,

(S33)

where Kβ(z) is the modified Bessel function of the second kind. From the previous expression we obtain

〈ed〉∗ =
1

Z

∫ ∞
−∞

dd ed exp

(
(1− e−d)(α1 − edα2) + (α1 − α2)d

2σ2(1− ρ)

)
=

=

√
α1

α2
K−1+ α2−α1

2(1−ρ)σ2

( √
α1α2

(1−ρ)σ2

)
K α2−α1

2(1−ρ)σ2

( √
α1α2

(1−ρ)σ2

) ,

(S34)

which leads to

gα1|α2
:= µ− σ2

2
− α1

2
+

√
α1α2K−1+ α2−α1

2(1−ρ)σ2

( √
α1α2

(1−ρ)σ2

)
2K α2−α1

2(1−ρ)σ2

( √
α1α2

(1−ρ)σ2

) . (S35)

If the level of cooperation is the same for the two agents (α1 = α2 = α), Eq. (S35) reduces to

gα|α := µ− σ2

2
+
α

2

K−1
(

α
(1−ρ)σ2

)
K0

(
α

(1−ρ)σ2

) − 1

 , (S36)
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FIG. S5. Sharing with a group of individuals instead of a unique partner does not affect the stability of cooperation. The
relative long term growth rate represents the difference between the typical long term growth rate of individual 1 and the
growth rate in the fully defective case αi = 0 ∀i. We show it in function of how much agent 1 shares (α1) keeping fixed
the amount shared by other agents in the group αi = 0.5 ∀i 6= 1. The latter function presents maxima (red markers) for
α1 > αi independently from the group size G, implying an optimal α higher to the α of the other agents in the group . All the
simulations were obtained with µ = 0.5 and σ = 1.

which is a strictly increasing function of α. In the case of full cooperation (i.e. in the limit α → ∞), one obtains
g∞|∞ := µ− (1 + ρ)σ2/4.

The analytical results are valid for two agents. Figure S5 shows that the same phenomenology applies for groups
of arbitrary sizes.

S3.2. The τ 6= 0 case

If the noise is time correlated we can use the Unified Coloured Noise Approximation [20] to find the stationary
probability distribution of d, which reads

P ∗(d) =
|1− τf ′(d)|

Z
exp

(
1

σ2(1− ρ)

(
−τ

2
f(d)2 +

∫ d

0

dxf(x)

))
, (S37)

where f(x) := α1e
−x−α2e

x

2 + α1−α2

2
Fig. S6 shows that the analytical solution is in agreement with the numerical simulations for all the different

parameter combination examined. For small values of τ the equilibrium sharing rates scales as

αess =
σ(1− ρ)

2

1√
τ
. (S38)

The growth rate at the equilibrium value scales as

gαess|αess =
σ2

4

(
1 + ρ− σ

√
1− ρ

√
τ
)
. (S39)

Fig. S7 shows the value of the equilibrium sharing rate αess as a function of the noise autocorrelation timescale τ .
Increasing τ always leads to a reduction of the equilibrium sharing rate and the corresponding growth rate.

S4. DISCRETE-TIME NUMERICAL SIMULATIONS

In the discrete time simulations each agent had a value xi(t). At every step the value xi was multiplied by a random
factor χ with probability 1/2 or 1/χ with probability 1/2. To obtain Fig. 2 we used χ = 2. Each agent then shared
a fraction ai of her total wealth in a common pool, which was then equally distributed among all agents. We always
considered xi(0) = 1 for all the agents.
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FIG. S6. The typical long term growth rate of individual 1 as a function of how much he shares (α1). Simulation (markers)
are in accordance with the analytical calculations (solid lines). Each column of panels is calculated for a different value of the
partner’s share α2. A,B,C: show the behaviour at different values of τ , the decorrelation time of the multiplicative noise (the
lighter the higher τ). In red a marker representing the maximum of each curve. We can see that, as τ increases the best choice
of α1 passes from being grater than α2 to the opposite. D,E,F: show the behaviour at different values of ρ, the correlation
between the multiplicative noise of the two individuals (the lighter the higher). In red a marker representing the maximum of
each curve. We can see that, as ρ increases the best choice of α1 always remains greater than α2.

We estimated the growth rate ga1|a2 over a time horizon T as the average of the logarithm of x1(T, a1, a2)/T over

105 simulations. For low values of T , below the critical T ∗, we have ga+δa|a(T ) < ga|a(T ) for every a, making full
defection stable. Above the critical time horizon T ∗, we obtain that ga+δa|a(T ) > ga|a(T ) for a < aess(T ) and vice
versa.

To obtain the equilibrium sharing probability aess at a given time horizon T we considered the difference in the
typical growth of an an agent cooperating as much as the partner a1 = a2 and one cooperating more than the partner
a1 = a2 +δa, with δa = 0.025. We define ∆(a) = (ga+δa|a(T )−ga|a(T ))/δa as the difference between the growth rates
(which, in the limit δa→ 0 approximates the derivative of the growth rate). We estimated numerically the equilibrium
value of the sharing fraction as the zero of the function f(a) obtained by fitting ∆(a) with a linear function.

S5. EVOLUTIONARY SIMULATIONS

We simulated the evolution of N = 100 individuals using the Wright-Fisher model. Each individual was character-
ized by a cooperation parameter ai initially uniformly distributed in [0.3, 0.7].

At each evolutionary time step, corresponding to one generation, individuals were grouped in pairs. Each agent
was associated with a value fi(t), which changed over time accordingly to a discrete stochastic growth and share, with
χ = 2.5. All the individuals were initialized with a value fi(0) = 1.

After each iteration individuals reproduced proportionally to the final value of the fitness fi(T ), obtained by running
the discrete growth and share model for T discrete steps.

The offspring generated have a share parameter ai equal to the one of the parent plus a random mutation normally
distributed with amplitude 0.05 (unless the resulting value was negative or larger than 1, in which case was set to 0
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FIG. S7. Equilibrium sharing rate αess (panel A) and long-term growth rate (panel B) gαess|αess as a function of the noise

autocorrelation time. All the panels were obtained from a numerical integration of Eq. (S37), using µ = 1, σ =
√

2 and ρ = 0.
The dashed lines refer to the scaling behavior of Eq. (S38) and Eq. (S39)

or 1, respectively).
Following reproduction, the new individuals were grouped in pairs randomly, and a new process started, resulting

in a new value fi(T ).
We consider two values of T , corresponding to a short time horizon (T = 20) and a long one (T = 2000).

S6. COSTLY COOPERATION

In this section we consider the case of costly cooperation. A cost can be introduced in multiple ways. The
main different between alternatives is whether the cost is shared by the group (e.g., if a fraction of the public good is
dissipated and lost) or only affects the cooperatios. We consider latter, being a more extreme case, where a cooperator
pays a direct cost δ, proportional to the level of cooperation

ẋi(t) = µxi(t) + σxi(t)ξi(t)− αiδxi +
1

G

∑
j 6=i

(αjxj(t)− αixi(t)) , (S40)

Following the same procedure of the case without cooperation cost (δ = 0) we obtain, in the case τ = 0

ḋ =
α1e
−d − α2e

d

2
+ (1 + 2δ)

α1 − α2

2
+ σ

√
2(1− ρ)ε(t) (S41)

from which we obtain

gα1|α2
:= µ− σ2

2
− α1

2
(1 + 2δ) +

√
α1α2K−1+(1+2δ)

α2−α1
2(1−ρ)σ2

( √
α1α2

(1−ρ)σ2

)
2K

(1+2δ)
α2−α1

2(1−ρ)σ2

( √
α1α2

(1−ρ)σ2

) (S42)

Fig. S8 shows the equilibrium sharing rate for different values of δ.
In the case of agents with equal strategy, we obtain

gα|α := µ− σ2

2
+
α

2

K−1
(

α
(1−ρ)σ2

)
K0

(
α

(1−ρ)σ2

) − 1− 2δ

 , (S43)

which has a maximum at finite values of α.
If we take the derivative over α, expand for large values of α we obtain

∂

∂α

αK−1
(

α
(1−ρ)σ2

)
K0

(
α

(1−ρ)σ2

) − α− 2δα

 ≈ −2δ +
(1− ρ)2σ4

8α2
+O

(
ε5/2

)
(S44)
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FIG. S8. equilibrium sharing rate αess and long-term growth rate gαess|αess as a function of the cooperation cost δ. The black
lines correspond are obtained via a numerical maximization of Eq. (S43). The gray dashed line in panel A corresponds to
the approximate solution of Eq. (S45). The gray dashed line in panel B corresponds instead to Eq. (S46). As expected, the
approximation correctly matches the trend for small values of δ. All the panels were obtained using µ = 1, σ =

√
2, and ρ = 0.

and set to zero we obtain

αess ∼
(1− ρ)σ2

4
√
δ

(S45)

and the growth rate simply reduces to

gαess|αess = µ− 1

4
σ2
(

1 + ρ+
√
δ(2− ρ(2− ρ))

)
(S46)

Fig. S8 shows that this approximation correctly matches the trend of αess and gαess|αess for small values of δ.
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